Course title :

Course Basic Information			
Academic Unit:	Faculty of Civil	Engineering	
Course title:	Physics with Mechanics		
Level:	Bachelor		
Course Status:	Mandatory		
Year of Study:	Year 1, Semester 1		
Number of Classes per Week:	2+2		
ECTS Credits:	6		
Time /Location:	According to the Timetable		
Teacher:	Prof. Dr Skender Kabashi		
Contact Details:	skender.kabashi@uni-pr.edu		
		• •	
Course Description:	Physics and m	neasurement. Motio	on in two and three
	dimensions. N	ewton's laws. Worl	k and Kinetic energy.
	Potential energy and conservation of energy. The theory		
	of gravity. Osc	cillatory motion, wa	ves. Fluid properties.
	Temperature a	and ideal gases. The	rmodynamics. Electric
	field Magnet	ic field Electroma	gnetic waves light
	mirrors and	lenses Interferer	oce diffraction and
	nalarization of	light Quantum nhy	
Course Coole		light. Quantum phy	SILS.
Course Goals:	Using the physical laws to solve the basic problems of		
	engineering; To introduce students to the basic concepts		
	of kinematics, dynamics, thermodynamic etc.; Using the		
	physical laws of physics in modeling and solving specific		
	engineering problems; Students should understand the		
	basic knowledge of physics to the level of general		
	engineering culture; Knowledge of physics at the basic		
	level, using the methods of mathematical analysis		
Expected Learning Outcomes:	To be able to coherence between the sizes and		
	phenomenon of physics and apply them during the		
	solving of technical problems. To develop skills of		
	independent	work and be ab	le to make proper
	conclusions. To finish practical measurements in the		
	laboratory, to analyze the gained results and to interpret		
	them etc.		
1	۱ 		
Student Workload (should be i	n compliance w	ith student's Learni	ng Outcomes)
Activity	Hours	Day/ Week	Total
Lectures	2	15	30
Theory/ Lab Work/Exercises	2	15	30
Practical Work			
Study for intermediate test	2	1 -	20
Field Work	Z	15	30
	1	1	

Test, seminar paper		2	5	10
Homework		2	5	10
Self-study (library or home)		3	6	24
Preparation for final exam	-	10	1	10
Assessment time (test, quiz, final		3	2	6
exam)				
Projects, presentations, etc.				
Total				150
Teaching Methods:		- Lecture		
		- Discussion d	luring lectures	
		- Exercises		
		- Work in gro	up	
Assessment Methods:		In evaluation, the percentage of the attendance of each		
		partial evaluation in the final evaluation must be		
		determined. O	ne of the ways of ev	aluation would be:
		First Evaluation	n: 20%	
		Second Evalua	tion: 20%	
		Homework or	other engagement:	10%
		Attendance 5%	<u> </u>	
		Final Exam 459	6	
		Total 100%	0	
		1010110070		
Primary Literature:		1. S. Skenderi o	lhe R. Maligi. Fizika	për studentët e
,		Fakultetve teknike ligjerata Prishtinë 2005		
		2 C. Chandari dha P. Maliai. Përmhladhia daturash nga		
		2. S. Skenderi dhe K. Maliqi, Permblednje detyrash nga		
		Fizika, Prishtine 2003		
Additional Literature:		1. D. Halliday, R. Resnick, J. Walker, Fundamentals of		
		Physics, John Wiley & Sons, 2001.		
		2. D. Glancoll, Practice Hall N	low lorsey 2000	and engineers,
Designed teaching plan		Tractice Hall, N	New Jersey, 2000	
Week	Title of t	he l'ecture		
Week 1:	System S	I Physical sizes	and measurements	Niotonit law
	applicati	one in machania	c .	
	applicati		5.	
VVEEK 2:	Conservation laws. Work and energy			
Week 3:	The appl	ications of physi	cal laws and their in	terpretation in
	nydrosta	tic and hydrody		· · · · · · · · · · · · · · · · · · ·
VVEEK 4:	Thermal	and thermal eq	uilibrium with exan	nples of application in
	construc	tion		
Week 5:	The trans	sfer of heat and	moisture. Three me	thods of heat
	transfer	with concrete ex	amples in construct	ion facilities
Week 6:	Phase transitions and heat exchange during phase transitions			
Week 7:	Thermodynamics and the laws of gases			
Week 8:	Machani		Oscillation subduced	and forced
VVCCN D.				
	Mechani	cal resonances.		
Week 9:	Mechanical waves. Spreading. Reflection, istors, energy.			

Week 10:	Acoustics. Sound waves, obedience and noise, echo
Week 11:	Electric and magnetic phenomena. Omit law, Weatstonit Bridge.
Week 12:	Optics and optical methods for the study of materials.
	Laws of light. Statements and lentils.
Week 13:	Interference, diffraction and polarization of light
Week 14:	Interference, diffraction and polarization of light
Week 15:	Laws of radiation and lasers

Academic Policies and Code of Conduct

- Regular attendance of lectures and exercises

- Being quiet during the sessions

- Shutting down mobile phones

- Being on time

Note | If a student has more than 3 class assignements evaluated below 50% he/she loses the right on taking the final exam. Evaluation is done from 0-100 %.